

978-1-5386-4235-1/18/$31.00 ©2018 IEEE

How End Users Express Conditionals in
Programming by Demonstration for Mobile Apps

Marissa Radensky

Computer Science Department
Amherst College

Amherst, MA
mradensky19@amherst.edu

Toby Jia-Jun Li

Human-Computer Interaction Institute
Carnegie Mellon University

Pittsburgh, PA
tobyli@cs.cmu.edu

Brad A. Myers

Human-Computer Interaction Institute
Carnegie Mellon University

Pittsburgh, PA
bam@cs.cmu.edu

Abstract—Though conditionals are an integral component of

programming, providing an easy means of creating conditionals

remains a challenge for programming-by-demonstration (PBD)

systems for task automation. We hypothesize that a promising

method for implementing conditionals in such systems is to in-

corporate the use of verbal instructions. Verbal instructions sup-

plied concurrently with demonstrations have been shown to im-

prove the generalizability of PBD. However, the challenge of

supporting conditional creation using this multi-modal approach

has not been addressed. In this extended abstract, we present our

study on understanding how end users describe conditionals in

natural language for mobile app tasks. We conducted a formative

study of 56 participants asking them to verbally describe condi-

tionals in different settings for 9 sample tasks and to invent con-

ditional tasks. Participant responses were analyzed using open

coding and revealed that, in the context of mobile apps, end users

often omit desired else statements when explaining conditionals,

sometimes use ambiguous concepts in expressing conditionals,

and often desire to implement complex conditionals. Based on

these findings, we discuss the implications for designing a multi-

modal PBD interface to support the creation of conditionals.

Keywords—conditionals, programming by demonstration, ver-

bal instruction, end-user development, natural programming.

I. INTRODUCTION AND BACKGROUND

Script generalization continues to be the key challenge for
programming-by-demonstration (PBD) systems for task
automation [1],[2]. A PBD system should not only produce
literal record-and-replay macros, but also understand end user
intentions behind recordings and be able to perform similar
tasks in different contexts [2]. Prior approaches of asking users
to provide several examples from which AI algorithms can
make generalizations using program synthesis approach, and
having users supply the features needed for generalization have
been shown to be infeasible due to users’ limited ability to
understand generalization options and provide sets of useful
examples spanning the complete space for synthesizing the
intended programming logic. Our research on SUGILITE [3],
EPIDOSITE [4], and APPINITE [5] demonstrated that leveraging
natural language instructions grounded by mobile apps’ GUIs
is a promising method to enable users to naturally express their
intentions for generalizing PBD scripts. While these systems
use natural language instructions to infer script
parameterization and data descriptions for individual actions,
none address the challenge of enabling users to create task-
wide conditionals, an important aspect of generalization.

Evidenced in [6], non-programmers state conditionals using
varying structures and levels of description. Understanding the
different manners in which end user programmers construct
conditionals and whether or not they provide the details
necessary for an intelligent agent to comprehend their
conditionals is crucial to building a PBD system that can
interact with users to extract intended conditionals from verbal
instructions. In this extended abstract, we summarize our study
on how end users naturally describe conditionals in the context
of mobile apps and discuss the implications for designing a
multi-modal PBD interface that supports conditionals.

II. METHODS

A. Formative Study

We conducted a formative study on Amazon Mechanical

Turk with 56 participants (38 non-programmers; 38 men, 17

women, 1 non-binary person). 30 participants completed a 3-

part survey, while 22 completed either Part 1 or 2, both fol-

lowed by Part 3. The other 4 participants completed both ver-

sions of the survey. 11 of 104 utterances in Part 1, 10 of 62 in

Part 2, and 19 of 65 in Part 3 were excluded from analysis due

to question misunderstandings and blank responses. Each part

included an example question and responses.

In Part 1, participants were given a description of a task for
an intelligent agent to complete within a PBD system for mo-

bile apps. The task had distinct associated situations, each of

which led to the task being completed differently. The partici-

pants were assigned one of 9 tasks such as playing a type of

music that depends on the time of day or going to a location

with a mode of transportation that depends on how much time

getting there by public transportation takes. They were asked

what they would say to the agent so that it may understand the

difference among the situations, and then for any alternative

responses. To avoid biasing responses’ wording, we used the

Natural Programming Elicitation method [7], presenting pic-
tures alongside limited text to describe the task and situations.

Part 2 differed in purpose from Part 1 in that it had

participants express conditionals while looking at relevant

phone screens. Participants were given a mobile app screenshot

with yellow arrows pointing to the screen components

containing information pertinent to the condition on which the

task situation depended. If other components might have been

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

311

confused with the correct ones, red arrows pointed them out.

Participants were asked to explain to the agent how to locate

and use the correct components to determine the situation at

hand. Finally, Part 3 asked participants for another task for

which an agent should perform differently in distinct situations.

B. Open Coding

The participants’ responses were analyzed using open
coding. For all 3 parts, a code identified conditionals with
unambiguous versus ambiguous language. For Part 1, codes
were used to identify conditionals without else statements, to
categorize the implied necessity of omitted else statements, and
to identify omitted else statements whose contents are implied.
For Part 3, codes were used to identify conditionals with
complex structures, those that use 2 or more apps, those
initiated by automatic triggers, and those with automatic
triggers based on information found in open APIs or app GUIs.

III. PRELIMINARY RESULTS AND IMPLICATIONS

A. Omission of Else Statements

In Part 1, though only conditionals with else statements

were given as example responses, 56% of the 39 participants

who completed Part 1 provided at least one response without

an else statement. Of those participants, 45% omitted an else

statement even though it was not clear whether it would be

needed or not. As an example, “Whenever I go to bed past 11

p.m. set 3 alarms” may or may not require an alternative such

as setting 1 alarm. Furthermore, 18% omitted an else state-

ment when it was definitely necessary. “Default to upbeat

music until 8pm every day,” for instance, requires an alterna-

tive for other times. This finding suggests that end users will

often omit the appropriate else statement in their natural lan-
guage instructions. Additionally, merely 33% of participants

expressed conditionals that implied the required alternative

when it was omitted and possibly or definitely necessary (e.g.

“If a public transportation access point is more than half a

mile away, then order an Uber” implies an alternative of find-

ing a public transportation route). PBD must thus be designed

to detect omitted else statements in natural language and guide

users to resolve ambiguity in conditional alternatives.

B. Ambiguous Concepts in Conditions

6 of the 9 tasks’ descriptions deliberately referred to condi-
tions incorporating ambiguous concepts such as “cold” and
“daytime.” To the last 27 participants, only unambiguous ex-
ample responses were shown to try to guide them away from
using ambiguous concepts. 10 of them completed Part 1 for
one of the 6 tasks just mentioned. 40% of the 10 participants
still supplied an ambiguous condition, such as “When I am
going to outside at chance of rain I will take umbrella … .” An
agent should be able to use multi-turn dialogue to ask users to
clarify ambiguous concepts like “chance of rain.”

With or without seeing exclusively unambiguous example
responses, 25 participants completed Part 2 for one of the 6
potentially ambiguous tasks. Interestingly, in this part in
which participants were provided an app screenshot displaying

specific information relevant to their task’s condition, all 25
participants provided clear definitions such as “longer than an
hour” and “past 8:00 pm” for ambiguous concepts. However,
15 participants who were given all unambiguous example re-
sponses completed Part 3, in which participants invented their
own conditional tasks, and 20% of these 15 participants ex-
pressed conditions that contained ambiguous concepts. These
results suggest that users might eliminate ambiguity from their
conditions by describing them while looking at the relevant
mobile app GUIs. If users still use ambiguous concepts, they
may be guided to disambiguate their conditions by prompts to
explain the ambiguous concepts in the context of the GUIs.

C. Desired Conditionals

Many participants desired conditionals that were complex
in some manner. 55% of the 44 invented conditionals use
more than 1 app, and 9% use more than 2 apps. 14% of the
conditionals, such as the switch statement “if it is day X, order
food Y,” have a more complicated structure than just “If …
else … .” Also, automatic triggers instead of voice commands
must initiate 55% of the conditionals, and 58% of these trig-
gers are not simple triggers like a notification but rather in-
formation found in open APIs or app GUIs. For instance,
“Turn the light on in the room if I'm at home at sunset or when
I arrive home after sunset” has a trigger involving the user’s
location, time of sunset, and current time, all information in
open APIs. These results motivate our PBD system, which
allows users to develop scripts for cross-app tasks more com-
plex and personalized than common pre-programmed ones.

We are now researching how to augment SUGILITE [3] and
APPINITE [5] to have all the indicated functionalities.

ACKNOWLEDGMENT

This research was supported in part by Oath through the
InMind project and in part by NSF grants CCF-1560137 and
CCF-1814826. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the sponsors.

REFERENCES

[1] H. Lieberman, Your wish is my command: Programming by example.
Morgan Kaufmann, 2001.

[2] A. Cypher and D. C. Halbert, Watch what I do: programming by

demonstration. MIT press, 1993.

[3] T. J.-J. Li, A. Azaria, and B. A. Myers, “SUGILITE: Creating
Multimodal Smartphone Automation by Demonstration,” in
Proceedings of CHI 2017.

[4] T. J.-J. Li, Y. Li, F. Chen, and B. A. Myers, “Programming IoT Devices
by Demonstration Using Mobile Apps,” in Proceedings of IS-EUD

2017.

[5] T. J.-J. Li et al., “APPINITE: A Multi-Modal Interface for Specifying
Data Descriptions in Programming by Demonstration Using Natural
Language Instructions,” in Proceedings of VL/HCC 2018.

[6] J. F. Pane, B. A. Myers, and others, “Studying the language and
structure in non-programmers’ solutions to programming problems,” Int.
J. Hum.-Comput. Stud., vol. 54, no. 2, pp. 237–264, 2001.

[7] Brad A. Myers, Andrew J. Ko, Thomas D. LaToza and YoungSeok
Yoon. “Programmers Are Users Too: Human-Centered Methods for
Improving Programming Tools,” IEEE Computer. 2016. vol. 49, no. 7.
pp. 44-52.

2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

312

